最新公告
  • 欢迎您光临IO源码网,本站秉承服务宗旨 履行“站长”责任,销售只是起点 服务永无止境!立即加入我们
  • 深度学习之模型设计:核心算法与案例实践 PDF 下载

    失效链接处理 深度学习之模型设计:核心算法与案例实践 PDF 下载


    本站整理下载:
    版权归出版社和原作者所有,链接已删除,请购买正版
    用户下载说明:
    电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
    http://product.dangdang.com/28972641.html
    相关截图:



    资料简介:
    本书理论知识体系完备,由浅入深,系统性地介绍了深度学习模型的发展脉络,以及模型深度设计、模型宽度设计、模型通道维度设计、残差连接设计、分组卷积设计、多尺度与非正常卷积设计、多输入网络设计、时序神经网络设计、三维卷积网络设计、动态推理模型与注意力机制设计、生成对抗网络设计这10类主流的深度学习模型设计思想。同时,本书为各模型设计思想提供了大量的实例,供读者实战演练。



    资料目录:

    第1章 神经网络和计算机视觉基础 1 
    1.1 计算机视觉 1 
    1.1.1 研究视觉的重要性 1 
    1.1.2 生物学视觉原理与视觉分层理论 2 
    1.2 数字图像基础 3 
    1.2.1 数字图像基础概述 3 
    1.2.4 数字图像处理基础 7 
    1.3 神经网络基础 11 
    1.3.1 生物神经元与人工神经网络 12 
    1.3.2 感知机是神经网络吗 12 
    1.3.3 BP算法 16 
    第2章 深度学习的基础 20 
    2.1 全连接神经网络的局限性 20 
    2.1.1 学习原理的缺陷 20 
    2.1.2 全连接神经网络的结构缺陷 21 
    2.1.3 高性能的传统机器学习算法 22 
    2.2 深度学习第三次复兴简史 22 
    2.2.1 互联网与大数据来了 23 
    2.2.2 GPU的普及 23 
    2.2.3 深层神经网络华丽归来 24 
    2.2.4 语音识别的重大突破 25 
    2.2.4 图像识别的重大突破 26 
    2.2.5 自然语言处理的重大突破 28 
    2.3 卷积神经网络基础 29 
    2.3.1 卷积操作 29 
    2.3.2 反卷积操作 30 
    2.3.3 卷积神经网络基本概念 31 
    2.3.4 卷积神经网络的核心思想 33 
    2.3.5 卷积神经网络的基本结构配置 33 
    2.4 深度学习优化基础 37 
    2.4.1 激活模型与常用激活函数 38 
    2.4.2 参数初始化方法 43 
    2.4.3 归一化方法 45 
    2.4.4 池化 49 
    2.4.5 化方法 50 
    2.4.6 学习率策略 54 
    2.4.7 正则化方法 57 
    2.5 深度学习主流开源框架 60 
    2.5.1 Caffe 60 
    2.5.2 TensorFlow 61 
    2.5.3 Pytorch 61 
    2.5.4 Theano 62 
    2.5.5 Keras 62 
    2.5.6 MXNet 63 
    2.5.7 Chainer 63 
    参考文献 64 
    第3章 数据集、评测指标与优化目标 66 
    3.1 数据集 66 
    3.1.1 分类数据集MNIST 66 
    3.1.2 ImageNet 66 
    3.1.3 分类数据集GHIM-10k 67 
    3.1.4 分类数据集Place20 67 
    3.1.5 肖像分割数据集 68 
    3.1.6 视频分类数据集UCF101 68 
    3.1.7 目标跟踪数据集ImageNet VIDEO 68 
    3.2 评测指标 69 
    3.2.1 分类评测指标 69 
    3.2.2 检索与回归评测指标 73 
    3.2.3 图像生成评测指标 75 
    3.3 优化目标 76 
    3.3.1 分类任务损失 76 
    3.3.2 回归任务损失 78 
    参考文献 80 
    第4章 加深网络,提升模型性能 81 
    4.1 经典的浅层卷积神经网络 81 
    4.1.1 Neocognitron网络 81 
    4.1.2 TDNN 83 
    4.1.3 Cresceptron网络 83 
    4.1.4 LeNet系列 84 
    4.2 经典网络的深度设计 87 
    4.2.1 AlexNet 87 
    4.2.2 从AlexNet到VGGNet的升级 90 
    4.2.3 为什么需要更深的网络 93 
    4.3 实验:网络深度对分类模型性能的影响 94 
    4.3.1 基准模型 94 
    4.3.2 不同学习率策略与优化方法 96 
    4.3.3 标准卷积模型网络深度影响实验 104 
    4.3.4 MobileNet网络深度影响实验 111 
    4.3.5 总结 113 
    参考文献 114 
    第5章 1×1卷积,通道维度升降的利器 115 
    5.1 特征通道与信息融合 115 
    5.1.1 通道内特征能做什么 115 
    5.1.2 通道间特征能做什么 116 
    5.2 1×1卷积及其应用 117 
    5.2.1 什么是1×1卷积 117 
    5.2.2 1×1卷积与瓶颈结构 117 
    5.2.3 1×1卷积与SqueezeNet 118 
    5.3 1×1卷积在瓶颈结构中的作用 120 
    5.3.1 基准模型 120 
    5.3.2 瓶颈结构探索 126 
    5.3.3 训练结果 143 
    5.4 1×1卷积在增强网络表达能力中的作用 145 
    5.4.1 基准模型 145 
    5.4.2 网络配置 146 
    5.4.3 实验结果 146 
    参考文献 148 

    第6章 加宽网络,提升模型性能 149 
    6.1 为什么需要更宽的网络结构 149 
    6.2 经典模型的网络宽度设计思想 149 
    6.2.1 调整通道数量 150 
    6.2.2 多分支网络结构设计 152 
    6.2.3 通道补偿技术 154 
    6.3 实验:网络宽度对模型性能的影响 155 
    6.3.1 实验背景 155 
    6.3.2 训练结果 161 
    6.3.3 总结 166 
    参考文献 166 
    第7章 残差连接,深层网络收敛的关键 167 
    7.1 残差连接 167 
    7.1.1 什么是残差连接 167 
    7.1.2 为什么残差连接有效 169 
    7.2 残差网络结构发展和应用 171 
    7.2.1 密集连接的残差网络结构 171 
    7.2.2 多分支残差结构 173 
    7.2.3 残差连接与多尺度信息融合 174 
    7.3 跳层连接在图像分割中的应用 175 
    7.3.1 数据集与基准模型 175 
    7.3.2 Allconv5_SEG实验 184 
    7.3.3 增加跳层连接 186 
    参考文献 199 
    第8章 分组卷积与卷积拆分,移动端高效率经典模型 201 
    8.1 卷积拆分与分组卷积 201 
    8.1.1 卷积拆分 201 
    8.1.2 分组卷积 201 
    8.2 分组卷积结构 202 
    8.2.1 简单的通道分组网络 203 
    8.2.2 级连通道分组网络 204 
    8.2.3 多分辨率卷积核通道分组网络 205 
    8.2.4 多尺度通道分组网络 206 
    8.2.5 多精度通道分组网络 207 
    8.3 训练一个用于图像分割的实时分组网络 208 
    8.3.1 项目背景 208 
    8.3.2 嘴唇分割模型训练 208 
    8.3.3 嘴唇分割模型优化 212 
    参考文献 219 
    第9章 多尺度网络与非正常卷积,更丰富的感受野与不变性 221 
    9.1 目标常见变换与不变性 221 
    9.1.1 常见变换 221 
    9.1.2 从模型本身获取不变性 221 
    9.1.3 从数据中学习不变性 223 
    9.2 多尺度网络结构 224 
    9.2.1 图像金字塔 224 
    9.2.2 多尺度网络 225 
    9.3 非正常卷积网络结构 228 
    9.3.1 带孔卷积 228 
    9.3.2 可变形卷积 229 
    9.3.3 非局部卷积 230 
    9.4 STN在可变形手写数字中的应用 232 
    9.4.1 项目背景 232 
    9.4.2 STN实验 233 
    参考文献 237 
    第10章 多输入网络,图像检索和排序的基准模型 238 
    10.1 什么时候需要多个输入 238 
    10.1.1 图像检索 238 
    10.1.2 目标跟踪 239 
    10.1.3 相对排序 239 
    10.2 常见多输入网络 240 
    10.2.1 Siamese网络 240 
    10.2.2 Triplet网络 241 
    10.3 目标跟踪Siamese网络实战 242 
    10.3.1 网络结构 242 
    10.3.2 数据读取 244 
    10.3.3 损失函数和评估指标 247 
    10.3.4 模型训练 248 
    10.3.5 模型测试 249 
    参考文献 254 
    第11章 时序神经网络,有记忆的网络更聪明 255 
    11.1 单向RNN和双向RNN 255 
    11.1.1 RNN 255 
    11.1.2 双向RNN 257 
    11.2 LSTM 258 
    11.3 LSTM视频分类实践 260 
    11.3.1 数据准备 260 
    11.3.2 数据读取 260 
    11.3.3 网络定义 264 
    11.3.4 模型训练结果 269 
    11.3.5 总结 270 
    第12章 卷积从二维变成三维,实现升维打击 271 
    12.1 三维卷积 271 
    12.2 三维卷积的应用 272 
    12.2.1 分类任务 272 
    12.2.2 图像分割 274 
    12.3 一个用于视频分类的三维卷积网络 274 
    12.3.1 基准模型与数据集 275 
    12.3.2 数据读取 278 
    12.3.3 训练结果 280 
    12.3.4 参数调试 281 
    12.3.5 总结 283 
    参考文献 283 
    第13章 动态推理与注意力机制,网络因样本而异 284 
    13.1 拓扑结构动态变化的网络 284 
    13.1.1 训练时拓扑结构变化的网络 284 
    13.1.2 测试时拓扑结构变化的网络 285 
    13.2 注意力机制 288 
    13.2.1 空间注意力模型 289 
    13.2.2 通道注意力模型[9] 289 
    13.2.3 混合注意力模型 290 
    13.3 基于提前退出机制的BranchyNet分类实战 291 
    13.3.1 背景 291 
    13.3.2 模型定义 292 
    13.3.3 实验结果 302 
    参考文献 305 
    第14章 生成对抗网络 306 
    14.1 生成对抗网络的基本原理 306 
    14.1.1 生成式模型与判别式模型 306 
    14.1.2 GAN简介 307 
    14.2 生成对抗网络损失的发展 308 
    14.2.1 GAN的损失函数问题 308 
    14.2.2 GAN的损失函数改进 309 
    14.3 生成对抗网络结构的发展 310 
    14.3.1 条件GAN 310 
    14.3.2 多尺度级连GAN 311 
    14.3.3 多判别器单生成器GAN 312 
    14.3.4 多生成器单判别器GAN 313 
    14.3.5 多生成器多判别器GAN 313 
    14.4 DCGAN图像生成实战 314 
    14.4.1 项目背景 314 
    14.4.2 项目解读 315 
    14.4.3 实验结果 319 
    参考文献 321


    *** 次数:10600 已用完,请联系开发者***
    1. 本站所有资源来源于用户上传和网络,因此不包含技术服务请大家谅解!如有侵权请邮件联系客服!384324621@qq.com
    2. 本站不保证所提供下载的资源的准确性、安全性和完整性,资源仅供下载学习之用!如有链接无法下载、失效或广告,请联系客服处理,有奖励!
    3. 您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容资源!如用于商业或者非法用途,与本站无关,一切后果请用户自负!
    4. 如果您也有好的资源或教程,您可以投稿发布,成功分享后有★币奖励和额外收入!

    IO 源码网 » 深度学习之模型设计:核心算法与案例实践 PDF 下载

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。若排除这种情况,可在对应资源底部留言,或 联络我们.。
    找不到素材资源介绍文章里的示例图片?
    对于PPT,KEY,Mockups,APP,网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
    IO源码吧
    一个高级程序员模板开发平台

    发表评论

    • 177会员总数(位)
    • 12330资源总数(个)
    • 53本周发布(个)
    • 0 今日发布(个)
    • 563稳定运行(天)

    提供最优质的资源集合

    立即查看 了解详情